Transposition of insertion sequence IS256Bsu1 in Bacillus subtilis 168 is strictly dependent on recA.
نویسندگان
چکیده
We developed an insertion sequence transposition detection system called the "jumping cat assay" and applied it to the Bacillus subtilis chromosome using IS256Bsu1 derived from B. subtilis natto. The high frequency of transposition enabled us to explore host factors; combining the assay and genetic analyses revealed that recA is essential for the transposition of IS256Bsu1. Detailed analyses using various domain mutants of recA demonstrated that this essentiality is not related to the function of recA in homologous recombination. Instead, the ATP binding and hydrolysis function seemed to be crucial for IS transposition. To elucidate the role of recA, we focused on the muB gene of the enterobacteriophage Mu. Based on information from the NCBI Conserved Domain Database, both MuB and RecA belong to the P-loop dNTPase superfamily. Further experiments revealed that muB complements the transposition-defective phenotype of a recA deletant, although it could not rescue UV sensitivity. These results suggest that recA shares a common function with muB that helps the transposition of IS256Bsu1 in B. subtilis.
منابع مشابه
Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis.
A Bacillus subtilis strain deficient in homologous recombination was isolated from a library of Tn917lac insertion mutants. The interrupted locus consists of an open reading frame encoding a 22,823-dalton polypeptide. Analysis of the deduced amino acid sequence revealed 34% identity and 47.3% similarity with the LexA protein from Escherichia coli. The gene was designated dinR. It is located bet...
متن کاملTranscriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions.
DNA microarrays were used to analyze the changes in gene expression in Bacillus subtilis strain 168 when nitrogen limiting (glutamate) and nitrogen excess (ammonium plus glutamate) growth conditions were compared. Among more than 100 genes that were significantly induced during nitrogen starvation we detected the comG, comF, comE, nin-nucA and comK transcription units together with recA. DNA wa...
متن کاملGene yerP, involved in surfactin self-resistance in Bacillus subtilis.
Surfactin is a cyclic lipopeptide biosurfactant. Transposon mutagenesis was performed in Bacillus subtilis strain 168, and a surfactin-susceptible mutant, strain 801, was isolated. Analysis of the region of insertion revealed that yerP was the determinant of surfactin self-resistance. YerP had homology with the resistance, nodulation, and cell division (RND) family proton motive force-dependent...
متن کاملCloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis.
DNA damage-inducible (din) genes in Bacillus subtilis are coordinately regulated and together compose a global regulatory network that has been termed the SOS-like or SOB regulon. To elucidate the mechanisms of SOB regulation, operator/promoter regions from three din loci (dinA, dinB, and dinC) of B. subtilis were cloned. Operon fusions constructed with these cloned din promoter regions rendere...
متن کاملGenetic composition of the Bacillus subtilis SOS system.
The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & genetic systems
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2017